Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Environ Monit Assess ; 196(6): 530, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724828

Increasingly, dry conifer forest restoration has focused on reestablishing horizontal and vertical complexity and ecological functions associated with frequent, low-intensity fires that characterize these systems. However, most forest inventory approaches lack the resolution, extent, or spatial explicitness for describing tree-level spatial aggregation and openings that were characteristic of historical forests. Uncrewed aerial system (UAS) structure from motion (SfM) remote sensing has potential for creating spatially explicit forest inventory data. This study evaluates the accuracy of SfM-estimated tree, clump, and stand structural attributes across 11 ponderosa pine-dominated stands treated with four different silvicultural prescriptions. Specifically, UAS-estimated tree height and diameter-at-breast-height (DBH) and stand-level canopy cover, density, and metrics of individual trees, tree clumps, and canopy openings were compared to forest survey data. Overall, tree detection success was high in all stands (F-scores of 0.64 to 0.89), with average F-scores > 0.81 for all size classes except understory trees (< 5.0 m tall). We observed average height and DBH errors of 0.34 m and - 0.04 cm, respectively. The UAS stand density was overestimated by 53 trees ha-1 (27.9%) on average, with most errors associated with understory trees. Focusing on trees > 5.0 m tall, reduced error to an underestimation of 10 trees ha-1 (5.7%). Mean absolute errors of bole basal area, bole quadratic mean diameter, and canopy cover were 11.4%, 16.6%, and 13.8%, respectively. While no differences were found between stem-mapped and UAS-derived metrics of individual trees, clumps of trees, canopy openings, and inter-clump tree characteristics, the UAS method overestimated crown area in two of the five comparisons. Results indicate that in ponderosa pine forests, UAS can reliably describe large- and small-grained forest structures to effectively inform spatially explicit management objectives.


Environmental Monitoring , Forests , Pinus ponderosa , Remote Sensing Technology , Environmental Monitoring/methods , Trees
2.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Article En | MEDLINE | ID: mdl-36877837

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Fires , Tracheophyta , Wildfires , Climate , Climate Change
3.
Ecol Appl ; 32(8): e2704, 2022 12.
Article En | MEDLINE | ID: mdl-35801514

A changing climate is altering ecosystem carbon dynamics with consequences for natural systems and human economies, but there are few tools available for land managers to meaningfully incorporate carbon trajectories into planning efforts. To address uncertainties wrought by rapidly changing conditions, many practitioners adopt resistance and resilience as ecosystem management goals, but these concepts have proven difficult to monitor across landscapes. Here, we address the growing need to understand and plan for ecosystem carbon with concepts of resistance and resilience. Using time series of carbon fixation (n = 103), we evaluate forest management treatments and their relative impacts on resistance and resilience in the context of an expansive and severe natural disturbance. Using subalpine spruce-fir forest with a known management history as a study system, we match metrics of ecosystem productivity (net primary production, g C m-2 year-1 ) with site-level forest structural measurements to evaluate (1) whether past management efforts impacted forest resistance and resilience during a spruce beetle (Dendroctonus rufipennis) outbreak, and (2) how forest structure and physiography contribute to anomalies in carbon trajectories. Our analyses have several important implications. First, we show that the framework we applied was robust for detecting forest treatment impacts on carbon trajectories, closely tracked changes in site-level biomass, and was supported by multiple evaluation methods converging on similar management effects on resistance and resilience. Second, we found that stand species composition, site productivity, and elevation predicted resistance, but resilience was only related to elevation and aspect. Our analyses demonstrate application of a practical approach for comparing forest treatments and isolating specific site and physiographic factors associated with resistance and resilience to biotic disturbance in a forest system, which can be used by managers to monitor and plan for both outcomes. More broadly, the approach we take here can be applied to many scenarios, which can facilitate integrated management and monitoring efforts.


Ecosystem , Picea , Humans , Carbon , Forests , Carbon Cycle
4.
Ecol Appl ; 32(7): e2682, 2022 10.
Article En | MEDLINE | ID: mdl-35592904

Over the past several decades, the management of historically frequent-fire forests in the western United States has received significant attention due to the linked ecological and social risks posed by the increased occurrence of large, contiguous patches of high-severity fire. As a result, efforts are underway to simultaneously reduce potential fire and fuel hazards and restore characteristics indicative of historical forest structures and ecological processes that enhance the diversity and quality of wildlife habitat across landscapes. Despite widespread agreement on the need for action, there is a perceived tension among scientists concerning silvicultural treatments that modify stands to optimally reduce potential fire behavior (fuel hazard reduction) versus those that aim to emulate historical forest structures and create structurally complex stands (restoration). In this work, we evaluated thinning treatments in the Black Hills National Forest that exemplify the extremes of a treatment continuum that ranges from fuel hazard reduction to restoration. The goal of this work was to understand how the differing three-dimensional stand structures created by these treatment approaches altered potential fire behavior. Our results indicate that restoration treatments created higher levels of vertical and horizontal structural complexity than the fuel hazard reduction treatments but resulted in similar reductions to potential crown fire behavior. There were some trade-offs identified as the restoration treatments created larger openings, which generated faster mean rates of fire spread; however, these increased spread rates did not translate to higher levels of canopy consumption. Overall, our results suggest that treatments can create vertical and horizontal complexity desired for restoration and wildlife habitat management while reducing fire hazard and that they can be used in concert with traditional fuel hazard reduction treatments to reduce landscape scale fire risk. We also provide some suggestions to land managers seeking to design and implement prescriptions that emulate historical structures and enhance forest complexity.


Fires , Tracheophyta , Ecosystem , Forests
5.
Ecol Appl ; 32(1): e02474, 2022 01.
Article En | MEDLINE | ID: mdl-34653267

Promoting ecological resilience to increasing disturbance activity is a key management priority under warming climate. Across the Northern Hemisphere, tree mortality from widespread bark beetle outbreaks raises concerns for how forest management can foster resilience to future outbreaks. Density reduction (i.e., thinning) treatments can increase vigor of remaining trees, but the longevity of treatment efficacy for reducing susceptibility to future disturbance remains a key knowledge gap. Using one of the longest-running replicated experiments in old-growth subalpine forests, we measured stand structure following a recent (early 2000s) severe mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak to examine the legacy of historical (1940s) thinning treatments on two components of resilience. We asked: 'How did historical thinning intensity affect (1) tree-scale survival probability and stand-scale survival proportion (collectively "resistance" to outbreak) for susceptible trees (lodgepole pine [Pinus contorta] ≥ 12 cm diameter) and (2) post-outbreak stand successional trajectories?' Overall outbreak severity was high (MPB killed 59% of susceptible individuals and 78% of susceptible basal area), and historical thinning had little effect on tree-scale and stand-scale resistance. Tree-scale survival probability decreased sharply with increasing tree diameter and did not differ from the control (uncut stands) in the historical thinning treatments. Stand-scale proportion of surviving susceptible trees and basal area did not differ from the control in historically thinned stands, except for treatments that removed nearly all susceptible trees, in which survival proportion approximately doubled. Despite limited effects on resistance to MPB outbreak, the legacy of historical treatments shifted dominance from large-diameter to small-diameter lodgepole pine by the time of outbreak, resulting in historically thinned stands with ~2× greater post-outbreak live basal area than control stands. MPB-driven mortality of large-diameter lodgepole pine in control stands and density-dependent mortality of small-diameter trees in historically thinned stands led to convergence in post-outbreak live tree stand structure. One exception was the heaviest historical thinning treatments (59-77% basal area removed), for which sapling dominance of shade-tolerant, unsusceptible conifers was lower than control stands. After six decades, thinning treatments have had minimal effect on resistance to bark beetle outbreaks, but leave persistent legacies in shaping post-outbreak successional trajectories.


Coleoptera , Pinus , Animals , Disease Outbreaks , Forests , Plant Bark
...